Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Cell Rep ; 40(7): 111214, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-1966424

ABSTRACT

Vaccine-associated enhanced respiratory disease (VAERD) is a severe complication for some respiratory infections. To investigate the potential for VAERD induction in coronavirus disease 2019 (COVID-19), we evaluate two vaccine leads utilizing a severe hamster infection model: a T helper type 1 (TH1)-biased measles vaccine-derived candidate and a TH2-biased alum-adjuvanted, non-stabilized spike protein. The measles virus (MeV)-derived vaccine protects the animals, but the protein lead induces VAERD, which can be alleviated by dexamethasone treatment. Bulk transcriptomic analysis reveals that our protein vaccine prepares enhanced host gene dysregulation in the lung, exclusively up-regulating mRNAs encoding the eosinophil attractant CCL-11, TH2-driving interleukin (IL)-19, or TH2 cytokines IL-4, IL-5, and IL-13. Single-cell RNA sequencing (scRNA-seq) identifies lung macrophages or lymphoid cells as sources, respectively. Our findings imply that VAERD is caused by the concerted action of hyperstimulated macrophages and TH2 cytokine-secreting lymphoid cells and potentially links VAERD to antibody-dependent enhancement (ADE). In summary, we identify the cytokine drivers and cellular contributors that mediate VAERD after TH2-biased vaccination.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Viral , Cricetinae , Cytokines/metabolism , Immunization , Lung/pathology , Mice , Mice, Inbred BALB C , Th1 Cells , Th2 Cells , Vaccination
2.
J Gen Virol ; 102(4)2021 04.
Article in English | MEDLINE | ID: covidwho-1172672

ABSTRACT

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection has caused a pandemic with tens of millions of cases and more than a million deaths. The infection causes COVID-19, a disease of the respiratory system of divergent severity. No treatment exists. Epigallocatechin-3-gallate (EGCG), the major component of green tea, has several beneficial properties, including antiviral activities. Therefore, we examined whether EGCG has antiviral activity against SARS-CoV-2. EGCG blocked not only the entry of SARS-CoV-2, but also MERS- and SARS-CoV pseudotyped lentiviral vectors and inhibited virus infections in vitro. Mechanistically, inhibition of the SARS-CoV-2 spike-receptor interaction was observed. Thus, EGCG might be suitable for use as a lead structure to develop more effective anti-COVID-19 drugs.


Subject(s)
Antiviral Agents/pharmacology , Catechin/analogs & derivatives , SARS-CoV-2/drug effects , Tea/chemistry , Animals , Betacoronavirus/drug effects , Betacoronavirus/physiology , COVID-19/prevention & control , COVID-19/virology , Catechin/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , HEK293 Cells , Humans , Lentivirus/drug effects , Lentivirus/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Virus Attachment/drug effects , Virus Replication/drug effects
3.
Proc Natl Acad Sci U S A ; 117(51): 32657-32666, 2020 12 22.
Article in English | MEDLINE | ID: covidwho-951832

ABSTRACT

The COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and has spread worldwide, with millions of cases and more than 1 million deaths to date. The gravity of the situation mandates accelerated efforts to identify safe and effective vaccines. Here, we generated measles virus (MeV)-based vaccine candidates expressing the SARS-CoV-2 spike glycoprotein (S). Insertion of the full-length S protein gene in two different MeV genomic positions resulted in modulated S protein expression. The variant with lower S protein expression levels was genetically stable and induced high levels of effective Th1-biased antibody and T cell responses in mice after two immunizations. In addition to neutralizing IgG antibody responses in a protective range, multifunctional CD8+ and CD4+ T cell responses with S protein-specific killing activity were detected. Upon challenge using a mouse-adapted SARS-CoV-2, virus loads in vaccinated mice were significantly lower, while vaccinated Syrian hamsters revealed protection in a harsh challenge setup using an early-passage human patient isolate. These results are highly encouraging and support further development of MeV-based COVID-19 vaccines.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Measles virus/immunology , SARS-CoV-2/immunology , Th1 Cells/immunology , Animals , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Humans , Measles Vaccine/genetics , Measles Vaccine/immunology , Measles virus/genetics , Mice , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/administration & dosage , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL